Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 4723, 2024 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413664

RESUMO

Z-DNA, a well-known non-canonical form of DNA involved in gene regulation, is often found in gene promoters. Transposable elements (TEs), which make up 45% of the human genome, can move from one location to another within the genome. TEs play various biological roles in host organisms, and like Z-DNA, can influence transcriptional regulation near promoter regions. MicroRNAs (miRNAs) are a class of small non-coding RNA molecules that play a critical role in the regulation of gene expression. Although TEs can generate Z-DNA and miRNAs can bind to Z-DNA, how these factors affect gene transcription has yet to be elucidated. Here, we identified potential Z-DNA forming sequence (ZFS), including TE-derived ZFS, in the promoter of prostaglandin reductase 1 (PTGR1) by data analysis. The transcriptional activity of these ZFS in PTGR1 was confirmed using dual-luciferase reporter assays. In addition, we discovered a novel ZFS-binding miRNA (miR-6867-5p) that suppressed PTGR1 expression by targeting to ZFS. In conclusion, these findings suggest that ZFS, including TE-derived ZFS, can regulate PTGR1 gene expression and that miR-6867-5p can suppress PTGR1 by interacting with ZFS.


Assuntos
DNA Forma Z , MicroRNAs , Humanos , Elementos de DNA Transponíveis/genética , Expressão Gênica , Regulação da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo
2.
Genes (Basel) ; 14(11)2023 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-38002927

RESUMO

Transposable elements (TEs) are mobile DNA entities that can move within the host genome. Over long periods of evolutionary time, TEs are typically silenced via the accumulation of mutations in the genome, ultimately resulting in their immobilization. However, they still play an important role in the host genome by acting as regulatory elements. They influence host transcription in various ways, one of which as the origin of the generation of microRNAs (miRNAs), which are so-called miRNAs derived from TEs (MDTEs). miRNAs are small non-coding RNAs that are involved in many biological processes by regulating gene expression at the post-transcriptional level. Here, we identified MDTEs in the Macaca mulatta (rhesus monkey) genome, which is phylogenetically close species to humans, based on the genome coordinates of miRNAs and TEs. The expression of 5 out of 17 MDTEs that were exclusively registered in M. mulatta from the miRBase database (v22) was examined via quantitative polymerase chain reaction (qPCR). Moreover, Gene Ontology analysis was performed to examine the functional implications of the putative target genes of the five MDTEs.


Assuntos
MicroRNAs , Humanos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , Elementos de DNA Transponíveis/genética , Macaca mulatta/genética , Macaca mulatta/metabolismo , Mutação
3.
Genes (Basel) ; 14(7)2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37510314

RESUMO

Although most human endogenous retroviruses (HERVs) have been silenced and lost their ability to translocate because of accumulated mutations during evolution, they still play important roles in human biology. Several studies have demonstrated that HERVs play pathological roles in numerous human diseases, especially cancer. A few studies have revealed that long non-coding RNAs that are transcribed from HERV sequences affect cancer progression. However, there is no study on microRNAs derived from HERVs related to cancer. In this study, we identified 29 microRNAs (miRNAs) derived from HERV sequences in the human genome. In particular, we discovered that miR-4454, which is HERV-H-derived miRNA, was upregulated in non-muscle-invasive bladder cancer (NMIBC) cells. To figure out the effects of upregulated miR-4454 in NMIBC, genes whose expression was downregulated in NMIBC, as well as tumor suppressor genes, were selected as putative target genes of miR-4454. The dual-luciferase assay was used to determine the negative relationship between miR-4454 and its target genes, DNAJB4 and SASH1, and they were confirmed to be promising target genes of miR-4454. Taken together, this study suggests that the upregulation of miR-4454 derived from HERV-H in NMIBC reduces the expression of the tumor suppressor genes, DNAJB4 and SASH1, to promote NMIBC progression.


Assuntos
Retrovirus Endógenos , MicroRNAs , Neoplasias não Músculo Invasivas da Bexiga , Neoplasias da Bexiga Urinária , Humanos , Retrovirus Endógenos/genética , Genoma Humano , Proteínas de Choque Térmico HSP40/genética , Proteínas de Choque Térmico HSP40/metabolismo , MicroRNAs/genética , Proteínas Supressoras de Tumor/genética , Neoplasias da Bexiga Urinária/genética
4.
Int J Mol Sci ; 24(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36769372

RESUMO

Circular RNAs (circRNAs) are a class of endogenous RNAs that control gene expression at the transcriptional and post-transcriptional levels. Recent studies have increasingly demonstrated that circRNAs act as novel diagnostic biomarkers and promising therapeutic targets for numerous cancer types by interacting with other non-coding RNAs such as microRNAs (miRNAs). The miRNAs are presented as crucial risk factors and regulatory elements in cancer by regulating the expression of their target genes. Some miRNAs are derived from transposable elements (MDTEs) that can transfer their location to another region of the genome. Genetic interactions between miRNAs and circular RNAs can form complex regulatory networks with various carcinogenic processes that play critical roles in tumorigenesis and cancer progression. This review focuses on the biological regulation of the correlative axis among circular RNAs, miRNAs, and their target genes in various cancer types and suggests the biological importance of MDTEs interacting with oncogenic or tumor-suppressive circRNAs in tumor progression.


Assuntos
MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Neoplasias/patologia , Carcinogênese/genética
5.
Int J Mol Sci ; 23(18)2022 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-36142830

RESUMO

Alternative splicing of messenger RNA (mRNA) precursors contributes to genetic diversity by generating structurally and functionally distinct transcripts. In a disease state, alternative splicing promotes incidence and development of several cancer types through regulation of cancer-related biological processes. Transposable elements (TEs), having the genetic ability to jump to other regions of the genome, can bring about alternative splicing events in cancer. TEs can integrate into the genome, mostly in the intronic regions, and induce cancer-specific alternative splicing by adjusting various mechanisms, such as exonization, providing splicing donor/acceptor sites, alternative regulatory sequences or stop codons, and driving exon disruption or epigenetic regulation. Moreover, TEs can produce microRNAs (miRNAs) that control the proportion of transcripts by repressing translation or stimulating the degradation of transcripts at the post-transcriptional level. Notably, TE insertion creates a cancer-friendly environment by controlling the overall process of gene expression before and after transcription in cancer cells. This review emphasizes the correlative interaction between alternative splicing by TE integration and cancer-associated biological processes, suggesting a macroscopic mechanism controlling alternative splicing by TE insertion in cancer.


Assuntos
MicroRNAs , Neoplasias , Processamento Alternativo , Códon de Terminação , Elementos de DNA Transponíveis/genética , Epigênese Genética , Humanos , MicroRNAs/genética , Neoplasias/genética
6.
Mol Cells ; 45(8): 522-530, 2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-35950452

RESUMO

Transposable elements (TEs) account for approximately 45% of the human genome. TEs have proliferated randomly and integrated into functional genes during hominoid radiation. They appear as right-handed B-DNA double helices and slightly elongated left-handed Z-DNAs. Human endogenous retrovirus (HERV) families are widely distributed in human chromosomes at a ratio of 8%. They contain a 5'-long terminal repeat (LTR)-gag-pol-env-3'-LTR structure. LTRs contain the U3 enhancer and promoter region, transcribed R region, and U5 region. LTRs can influence host gene expression by acting as regulatory elements. In this review, we describe the alternative promoters derived from LTR elements that overlap Z-DNA by comparing Z-hunt and DeepZ data for human functional genes. We also present evidence showing the regulatory activity of LTR elements containing Z-DNA in GSDML. Taken together, the regulatory activity of LTR elements with Z-DNA allows us to understand gene function in relation to various human diseases.


Assuntos
DNA Forma Z , Retrovirus Endógenos , Retrovirus Endógenos/genética , Humanos , Regiões Promotoras Genéticas/genética , Sequências Repetidas Terminais/genética
7.
Int J Mol Sci ; 23(16)2022 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-36012216

RESUMO

It is estimated that up to 80% of the human genome is transcribed into RNA molecules but less than 2% of the genome encodes the proteins, and the rest of the RNA transcripts that are not translated into protein are called non-coding RNAs (ncRNAs). Many studies have revealed that ncRNAs have biochemical activities as epigenetic regulators at the post-transcriptional level. Growing evidence has demonstrated that transposable elements (TEs) contribute to a large percentage of ncRNAs' transcription. The TEs inserted into certain parts of the genome can act as alternative promoters, enhancers, and insulators, and the accumulation of TEs increases genetic diversity in the human genome. The TEs can also generate microRNAs, so-called miRNA-derived from transposable elements (MDTEs), and are also implicated in disease progression, such as infectious diseases and cancer. Here, we analyzed the origin of ncRNAs and reviewed the published literature on MDTEs related to disease progression.


Assuntos
Elementos de DNA Transponíveis , MicroRNAs , Elementos de DNA Transponíveis/genética , Progressão da Doença , Genômica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido/genética
8.
Fish Shellfish Immunol ; 126: 178-186, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643352

RESUMO

MicroRNAs (miRNAs) are small non-coding RNAs that participate in various biological and cellular processes by regulating target gene expression. miRNAs are also known to play vital roles in the pathogenesis of various diseases, including infections, as well as the disease progression and defense responses. In this study, we examined the expression levels of pol-miR-140-3p and its target gene, kinesin family member 5A (KIF5A), in association with the Streptococcus parauberis (S. parauberis) infection, a major bacterial pathogen that causes streptococcosis in olive flounder (Paralichthys olivaceus). KIF5A is a heavy chain isoform of kinesin-1, which is known to be brain-specific, and this study is the first examination of KIF5A expression related to the regulation of miRNA in olive flounder (named PoKIF5A). There were significant differences in expression levels between infected and healthy olive flounder as the expression of pol-miR-140-3p in the infected fish was lower than that in the control, while the expression of PoKIF5A was higher in the infected fish than in the healthy controls. These contradictory results suggest that downregulated pol-miR-140-3p induces the expression of PoKIF5A against S. parauberis infection in olive flounder.


Assuntos
Doenças dos Peixes , Linguado , MicroRNAs , Infecções Estreptocócicas , Animais , Família , Doenças dos Peixes/microbiologia , Linguado/genética , Linguado/microbiologia , Cinesinas/genética , MicroRNAs/genética , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/veterinária , Streptococcus
9.
Genes (Basel) ; 13(5)2022 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-35627268

RESUMO

Acute myeloid leukemia (AML) is the most common type of leukemia in adults, accounting for 30% of all adult leukemia cases. While there have been recent improvements in the prognosis of the disease, the prognosis remains grim, and further understanding of AML and the development of new therapeutic agents is critical. This study aimed to investigate the potential interaction between colorectal cancer (CRC) cells and AML cells. Unexpectedly, we found that CRC cell-derived conditioned medium (CM) showed anticancer activities in AML cells by inducing apoptosis and differentiation. Mechanistic studies suggest that these phenotypes are closely associated with the suppression of PI3K/AKT/mTOR and MAPK survival signaling, the upregulation of myeloid differentiation-promoting transcription factors c/EBPα and PU.1, and the augmentation of executioner caspases-3/7. Importantly, bioinformatic analyses of our gene expression profiling data, including that derived from principal component analysis (PCA), volcano plots, boxplots, heat maps, kyoto encyclopedia of genes and genomes (KEGG) pathways, and receiver operating characteristic (ROC) curves, which evaluate gene expression profiling data, provided deeper insight into the mechanism in which CRC-CM broadly modulates apoptosis-, cell cycle arrest-, and differentiation-related gene expression, such as BMF, PLSCR3, CDKN1C, and ID2, among others, revealing the genes that exert anticancer effects in AML cells at the genomic level. Collectively, our data suggest that it may be worthwhile to isolate and identify the molecules with tumor-suppressive effects in the CM, which may help to improve the prognosis of patients with AML.


Assuntos
Neoplasias Colorretais , Leucemia Mieloide Aguda , Neoplasias Colorretais/genética , Meios de Cultivo Condicionados/farmacologia , Perfilação da Expressão Gênica , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais/genética
10.
Mol Cells ; 45(7): 465-478, 2022 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-35444070

RESUMO

MicroRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of target messenger RNA (mRNA) complementary to the 3' untranslated region (UTR) at the post-transcriptional level. Hsa-miR-422a, which is commonly known as miRNA derived from transposable element (MDTE), was derived from short interspersed nuclear element (SINE). Through expression analysis, hsa-miR-422a was found to be highly expressed in both the small intestine and liver of crab-eating monkey. AT-Rich Interaction Domain 5 B (ARID5B) was selected as the target gene of hsa-miR-422a, which has two binding sites in both the exon and 3'UTR of ARID5B. To identify the interaction between hsa-miR-422a and ARID5B, a dual luciferase assay was conducted in HepG2 cell line. The luciferase activity of cells treated with the hsa-miR-422a mimic was upregulated and inversely downregulated when both the hsa-miR-422a mimic and inhibitor were administered. Nuclear factor erythroid-2 (NF-E2) was selected as the core transcription factor (TF) via feed forward loop analysis. The luciferase expression was downregulated when both the hsa-miR-422a mimic and siRNA of NF-E2 were treated, compared to the treatment of the hsa-miR-422a mimic alone. The present study suggests that hsa-miR-422a derived from SINE could bind to the exon region as well as the 3'UTR of ARID5B. Additionally, hsa-miR-422a was found to share binding sites in ARID5Bwith several TFs, including NF-E2. The hsa-miR-422a might thus interact with TF to regulate the expression of ARID5B, as demonstrated experimentally. Altogether, hsa-miR-422a acts as a super enhancer miRNA of ARID5Bby collaborating with TF and NF-E2.


Assuntos
MicroRNAs , Regiões 3' não Traduzidas/genética , Regulação da Expressão Gênica , Luciferases/genética , MicroRNAs/metabolismo , RNA Mensageiro
11.
Mol Cells ; 43(11): 953-963, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33199671

RESUMO

Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an infectious disease with multiple severe symptoms, such as fever over 37.5°C, cough, dyspnea, and pneumonia. In our research, microRNAs (miRNAs) binding to the genome sequences of severe acute respiratory syndrome coronavirus (SARS-CoV), Middle East respiratory-related coronavirus (MERS-CoV), and SARS-CoV-2 were identified by bioinformatic tools. Five miRNAs (hsa-miR-15a-5p, hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-16-5p, and hsa-miR-196a-1-3p) were found to commonly bind to SARS-CoV, MERS-CoV, and SARS-CoV-2. We also identified miRNAs that bind to receptor proteins, such as ACE2, ADAM17, and TMPRSS2, which are important for understanding the infection mechanism of SARS-CoV-2. The expression patterns of those miRNAs were examined in hamster lung samples infected by SARS-CoV-2. Five miRNAs (hsa-miR-15b-5p, hsa-miR-195-5p, hsa-miR-221-3p, hsa-miR-140-3p, and hsa-miR-422a) showed differential expression patterns in lung tissues before and after infection. Especially, hsa-miR-15b-5p and hsa-miR-195-5p showed a large difference in expression, indicating that they may potentially be diagnostic biomarkers for SARS-CoV-2 infection.


Assuntos
COVID-19/genética , Pulmão/virologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , SARS-CoV-2/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , Proteína ADAM17/genética , Proteína ADAM17/metabolismo , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Células Cultivadas , Biologia Computacional , Cricetinae , Regulação da Expressão Gênica , Marcadores Genéticos/genética , Humanos , Pulmão/fisiologia , MicroRNAs/genética , Pandemias , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo
12.
Genes Genomics ; 42(1): 55-65, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721105

RESUMO

BACKGROUND: Sebastes schlegelii are an important species of fish found in the coastal areas of the Korea with significant commercial importance. Most studies thus far have been primarily focused on environmental factors; behavioural patterns, aquaculture, diseases and limited genetic studies with little to none related to either microRNAs (miRNAs) or transposable elements (TE). OBJECTIVES: In order to understand biological roles of TE-derived miR-1269a, we examined expression pattern for miR-1269a and its target gene, KSR2, in various tissues of Sebastes schlegelii. Also, we performed luciferase reporter assay in HINAE cells. METHODS: UCSC Genome Browser (https://genome.ucsc.edu/) was used to examine which TE is associated with miR-1269a. For the target genes for miR-1269a, the target genes associated with the miRNA were identified using miRDB (http://www.mirdb.org/) and TargetScan 7.1 (http://www.targetscan.org/vert_71/). A two-step miRNA kit, HB miR Multi Assay Kit™ System. I was used for the analysis of TE-derived miRNA expression patterns. The 3'UTR of KSR2 gene was cloned into the psiCHECK-2 vector. Subsequently co-transfected with miR-1269a mimics to HINAE cells for luciferase reporter assay. RESULTS: MiR-1269a was found to be derived from LTR retrotransposon, MLT2B. LTR-derived miR-1269a was highly expressed in the muscle, liver and gonad tissues of Sebastes schlegelii, but KSR2 revealed high expression in the brain. Co-transfection of KSR2 and miR-1269a mimic to HINAE cells showed high activity of miR-1269a in relation to KSR2. CONCLUSION: LTR-derived miR-1269a showed enhancer activity with relation to KSR2 in Sebastes schlegelii. The data may be used as a foundation for further investigation regarding correlation of miRNA and target genes in addition to other functional studies of biological significance in Sebastes schlegelii.


Assuntos
Regiões 3' não Traduzidas/genética , Proteínas de Peixes/metabolismo , MicroRNAs/genética , Perciformes/genética , Proteínas Serina-Treonina Quinases/metabolismo , Retroelementos/genética , Sequências Repetidas Terminais/genética , Animais , Sequência de Bases , Biologia Computacional , Proteínas de Peixes/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas Serina-Treonina Quinases/genética , Homologia de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...